|  | Working Scientifically | Living Things \& their Habitats | Animals including Humans | Materials | Evolution \& Inheritance | Light | Forces \& Magnets | Electricity |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\begin{aligned} & Y \\ & 5 \end{aligned}$ | - plan different types of scientific enquiries to answer questions, including recognising and controlling variables where necessary <br> - take measurements, using a range of scientific equipment, with increasing accuracy and precision, taking repeat readings when appropriate <br> - record data and results of increasing complexity using scientific diagrams and labels, classification keys, tables, scatter graphs, bar and line graphs <br> - use test results to make predictions to set up further comarative and fair tests <br> - report and presenting | - describe the differences in the life cycles of a mammal, amphibian, insect and bird <br> - describe the life process of reproduction in some plants and animals | - identify and name the main parts of the human circulatory system, and describe the functions of the heart, blood vessels and blood <br> - recognise the impact of diet, exercise, drugs and lifestyle on the way their bodies function <br> - describe the ways in which nutrients and water are transported within animals, including humans <br> - describe the changes as humans develop to old age | - compare \& group everyday materials using properties, e.g. hardness, solubility, transparency, conductivity (electrical \& thermal), and response to magnets <br> - know that some materials dissolve in liquid to form a solution, describe how to recover the substance <br> - use knowledge of solids, liquids and gases to decide how mixtures might be separated (filtering, sieving and evaporating) <br> - give reasons, based on evidence from testing, for the particular uses of everyday materials e.g. metals, wood and plastic <br> - demonstrate that dissolving, mixing and changes of state are reversible changes <br> - explain that some changes result in the formation of new materials; this kind of change is not usually reversible, e.g. burning and the action of acid on bicarbonate of soda. |  |  |  |  |
| $6$ | findings from enquiries, including conclusions, causal relationships and explanations of and a degree of trust in results, in oral and written forms such as displays and other presentations <br> - identify scientific evidence that has been used to support or refute ideas or arguments | - describe how living things are classified into broad groups according to common observable characteristics, based on similarities and differences, including microorganisms, plants and animals <br> - give reasons for classifying plants and animals based on specific characteristics. |  |  | - recognise that living things have changed over time and that fossils provide information about living things that inhabited the Earth millions of years ago <br> - recognise that living things produce offspring of the same kind, but normally offspring vary and are not identical to their parents <br> - identify how animals and plants are adapted to suit their environment in different ways and that adaptation may lead to evolution. | - recognise that light appears to travel in straight lines <br> - use the idea that light travels in straight lines to explain that objects are seen because they give out or reflect light into the eye <br> - explain that we see things because light travels from light sources to our eyes or from light sources to objects, then to our eyes <br> - use the idea that light travels in straight lines to explain why shadows have the same shape as the objects that cast them. | - explain that unsupported objects fall towards the Earth because of the force of gravity acting between the Earth and the falling object <br> - identify the effects of air resistance, water resistance and friction, that act between moving surfaces <br> - recognise that some mechanisms, including levers, pulleys and gears, allow a smaller force to have a greater effect | - associate the brightness of a lamp or the volume of a buzzer with the number and voltage of cells used in the circuit <br> - compare and give reasons for variations in how components function, including the brightness of bulbs, the loudness of buzzers and the on/off position of switches <br> - use recognised symbols when representing a simple circuit in a diagram. |

